
COP 3223: C Programming (Functions – Part 3) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Functions In C – Part 3

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Functions – Part 3) Page 2 © Dr. Mark J. Llewellyn

Tracing Program Execution With Functions

• It is important in your understanding of how functions

work, to be able to trace the values passed to a function

when it is called, the execution effect of the function, and

the value returned by the function when a return state is

encountered.

• We’ll trace the execution of the program shown on the

next page; and I’ve put some additional tracing problems

that involve functions in the practice problems. The code

for each of these problems is also on the code page,

however, before you download them and run them, trace

the execution by hand and see if the execution verifies

your hand trace.

COP 3223: C Programming (Functions – Part 3) Page 3 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 3) Page 4 © Dr. Mark J. Llewellyn

TRACE

Line 21: a=2, b=3, c = 1

Line 22: c = exampleFunction(a + b, a + c, b + c), so calling exampleFunction(5, 3, 4)

Line 6: in exampleFunction(x = 5, y = 3, z = 4)

Line 9: sum = x + y + z, since 5 + 3 + 4 = 12, sum = 12

Line 10: if (sum < x * y) is 12 < 15, yes so Line 11 is executed next

Line 11: return x + y – function returns value of 8 – returns to Line 22

Line 22: c = 8

Line 23: prints: “After the first call to exampleFunction: a = 2, b = 3, c = 8

Line 24: b = exampleFunction(a, b, c), so calling exampleFunction(2, 3, 8)

Line 6: in exampleFunction(x = 2, y = 3, z = 8)

Line 9: sum = x + y + z, since 2 + 3 + 8 = 13, sum = 13

Line 10: if (sum < x * y) is 13 < 6, no so Line 13 is executed next

Line 13: if (sum < 2 * x * y) is 13 < 12, no so Line 16 is executed next

Line 16: return x + z – function returns value of 10 - returns to line 24

Line 24: b = 10

Line 25: prints: “After the second call to exampleFunction: a = 2, b = 10, c = 8

COP 3223: C Programming (Functions – Part 3) Page 5 © Dr. Mark J. Llewellyn

TRACE

Line 26: a = exampleFunction(a, b, exampleFunction(c, b, a))

first call to exampleFunction is the inner call whose purpose is to return the value

of the third parameter to the outer call to exampleFunction. The inner call is:

exampleFunction(c, b, a), so the call is exampleFunction(8, 10, 2)

Line 6: in exampleFunction(x = 8, y = 10, z = 2)

Line 9: sum = x + y + z, since 8 + 10 + 2 = 20, sum = 20

Line 10: if (sum < x * y), is 20 < 80, yes, so Line 11 is executed next

Line 11: return x + y – function returns value of 18 – returns to inner call in line 26

Line 26: a = exampleFunction(2, 10, 18), since a = 2. b = 10, and inner call returned 18

Line 6: in exampleFunction(x = 2, y = 10, z = 18)

Line 9: sum = x + y + z, since 2 + 10 + 18 = 30, sum = 30

Line 10: if (sum < x * y) is 30 < 20, no, so Line 13 is executed next

Line 13: if (sum < 2 * x * y), is 30 < 40, yes, so Line 14 is executed next

Line 14: return y + z – function returns 28 – returns to line 26

Line 26: a = 28

Line 27: prints: “After the third call to exampleFunction: a = 28, b = 10, c = 8

COP 3223: C Programming (Functions – Part 3) Page 6 © Dr. Mark J. Llewellyn

Did you get these values when you traced the

execution of the program? If not…do it again!

COP 3223: C Programming (Functions – Part 3) Page 7 © Dr. Mark J. Llewellyn

Passing Parameters In C

• Different programming languages employ several different

mechanisms for passing parameters to functions.

• Two of the most popular mechanisms are pass-by-value

and pass-by-reference. These two mechanisms are used in

languages like Java, Perl, C, C++, C# and many others.

• In C, parameter passing is done using pass-by-value, as we

have seen. An every C function returns at most 1 value.

• This of course means that it is not possible for a function

in C to modify any of the actual parameters that are passed

to it (see next page for example).

COP 3223: C Programming (Functions – Part 3) Page 8 © Dr. Mark J. Llewellyn

Passing Parameters In C

• Recall that pass-by-value means that a copy of the value of the

actual parameter is copied into the formal parameter in the

function.

• Since the function is working with its own copy of each

parameter, it is not possible for the function to modify the value

of any parameter passed to it.

int aFunction(int a, int b, int c) { . . . }

The called function

int x = 1;

int y = 2, z = 3;

result = aFunction(x, y, z);

The calling function

Value of 1

copied to a
Value of 2

copied to b Value of 3

copied to c

COP 3223: C Programming (Functions – Part 3) Page 9 © Dr. Mark J. Llewellyn

Passing Parameters In C

• Passing parameters by value places a serious restriction on
what a function can accomplish.

• For example, suppose you wanted to construct a function
that would take 3 parameters and add 10 to each
parameter. Since the function can only return one value,
this would not be possible to do in C with a single function
call. (Rather you would write the function with a single
parameter and then call it three different times. This is
practice problem 2 in this set of notes).

• Fortunately, there is a way around this restriction in C
which allows us to simulate the pass-by-reference
mechanism. Pass-by-reference is simulated using pointers
and the indirection operator.

COP 3223: C Programming (Functions – Part 3) Page 10 © Dr. Mark J. Llewellyn

Passing Parameters In C

• Pass-by-reference differs from pass-by-value in that a
“reference” to the parameter is passed to the function
rather than a copy of the value of the parameter.

• The “reference” is the address of the parameter being
passed to the function. Rather than a copy of the value
being passed to the function, the address of the original
parameter is passed to the function.

• Thus, the function is not working with its own copy of the
parameter. But rather is sharing the same memory location
with the calling function.

• To understand how pass-by-reference works, we need to
look more closely at the concept of a pointer and the
indirection operator.

COP 3223: C Programming (Functions – Part 3) Page 11 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator
• Although we have not made a great deal of fuss about it,

you’ve been using pointers every time you’ve dealt with a
file in C.

• We done something like:

FILE *inFilePtr;

each time we’ve set up a file pointer for reading in values
from a file. The * is the indirection operator in C.

• Declaring a pointer to an int, float, or char type is
done in exactly the same fashion:

//declares a pointer to an int

int *aPtr;

//declares a pointer to a double

double *anotherPtr;

COP 3223: C Programming (Functions – Part 3) Page 12 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator

An aside on the indirection operator *:

It might help you to keep things straight when dealing with pointers to

understand why the * is called an indirection operator. When you refer
to a normal variable, such as int a;, you are directly referring to the

location in memory that has been assigned to hold the values that the

variable will represent during the course of the execution of the
program. When you refer to a pointer variable, such as int *ptr;,

you are indirectly referring to the location in memory that has been

assigned to hold an integer value. In other words, you are not referring

to the location the location itself but to the address of the location that

holds the value, thus the indirect reference. This naming convention is

a carry over from machine language programming where the direct
value of ptr is a memory location (address) and the indirect value of

ptr is the value at the memory location (address) stored in ptr.

COP 3223: C Programming (Functions – Part 3) Page 13 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator

int a = 2;

double b = 14.69;

int *ptr1;

double *ptr2;

Some code

2

14.69

Memory

a

b

ptr1

ptr2

?

?Unlike a normal variable, which if

uninitialized assumes the value of the

memory location to which it is

assigned, a pointer variable literally

has no value (i.e., NULL) until it

references some specific location in

memory.

COP 3223: C Programming (Functions – Part 3) Page 14 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator

• Another way of thinking about the differences
between a regular variable and a pointer variable is
this:

• When you declare a regular variable, such as int
a; this means that a is capable of having values that
are of the int type.

• When you declare a pointer variable, such as int
*ptr; this means that ptr is capable of having
values that are addresses in the computer memory that
hold values that are of the int type.

• Thus, pointer variables cannot store any value other
than a memory address.

COP 3223: C Programming (Functions – Part 3) Page 15 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator

• If we made the following declarations:

int a = 18;

int *ptr;

ptr = a; //illegal assignment

• The above assignment statement would be
illegal, since 7 is not a valid memory address
that can be accessed by your C program (it is
technically an address in the memory but low
level addresses are reserved for your OS and
are off limits to normal application programs!)

COP 3223: C Programming (Functions – Part 3) Page 16 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator

• If we made the following declarations:

int a = 18;

int *ptr;

ptr = &a; //legal assignment

• The above assignment statement assigns the
address of the variable a (i.e., the address of
the memory location that was assigned to the
variable a) and causes the value of ptr to be
assigned to that address. (See next page for
graphical description of this chunk of code.)

COP 3223: C Programming (Functions – Part 3) Page 17 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator
1 int a = 18; //declare int variable a set to 18

2 int *ptr; //declare a pointer variable ptr

3 ptr = &a; //assign ptr the address of a

18a

Effect of Line 1

18a

Effect of Line 2

ptr

NULL

18a

Effect of Line 3

ptr

COP 3223: C Programming (Functions – Part 3) Page 18 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator

• A common use of pointers is to provide access to the
value of a variable without reference to the variable
itself.

• Think about parameter passing and the difference
between sending a copy of a value and sending the
address of the value. The function operating with the
address of a variable does not need to know the name
of that variable, it only needs to be able to access the
same memory location.

• This is accomplished using the indirection operator
(also known as the dereference operator).

• The indirection operator can be used to provide access
to the memory location referenced by a pointer
variable.

COP 3223: C Programming (Functions – Part 3) Page 19 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator

• Let’s modify the example we were looking at on pages
15-17, to add another couple of lines of code, so that it
now will look like the following:

1 int a = 18; //declare int variable a set to 18

2 int *ptr; //declare a pointer variable ptr

3 ptr = &a; //assign ptr the address of a

4 *ptr = 12; //assigns 12 to location referenced by ptr

5 printf(“The value of a is: %d\n”, a);

• The next page steps through the execution of this
code, beginning with line 3.

COP 3223: C Programming (Functions – Part 3) Page 20 © Dr. Mark J. Llewellyn

Pointers and the Indirection Operator
3 ptr = &a; //assign ptr the address of a

4 *ptr = 12; //assigns 12 to location referenced by ptr

5 printf(“The value of a is: %d\n”, a);

18a

Effect of Line 3

ptr

12a

Effect of Line 4

ptr

Effect of Line 5

The value of a is:

12

COP 3223: C Programming (Functions – Part 3) Page 21 © Dr. Mark J. Llewellyn

An Example Done Both Ways

• Let’s look at a simple example program that uses a
function to compute x3 for a value passed to the
function.

• We’ll write the program first using a function where
the variable is passed to the function using pass-by-
value.

• Then we’ll write a second version of the program
using a function where the variable is passed to the
function using pass-by-reference.

• Note the similarities and differences in the two
programs.

COP 3223: C Programming (Functions – Part 3) Page 22 © Dr. Mark J. Llewellyn

PASS-BY-VALUE VERSION

COP 3223: C Programming (Functions – Part 3) Page 23 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 3) Page 24 © Dr. Mark J. Llewellyn

PASS-BY-REFERENCE VERSION

Notice that the
address of number is

passed to the

function. The function

will modify the value

at the address of
number.

Notice that the function

parameter is a pointer variable

COP 3223: C Programming (Functions – Part 3) Page 25 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 3) Page 26 © Dr. Mark J. Llewellyn

Practice Problems

1. Trace the execution of the program shown on

the next page. Use a technique similar to the
one we used to trace the program on page 3.

COP 3223: C Programming (Functions – Part 3) Page 27 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Functions – Part 3) Page 28 © Dr. Mark J. Llewellyn

Practice Problems
2. We mentioned on page 9 that a function in C cannot modify the

values of parameters passed to it directly. Write a C program

that uses a function with a pass-by-value parameter that will

allow you to add 10 to the value of three actual parameters

through three separate calls to the function.

COP 3223: C Programming (Functions – Part 3) Page 29 © Dr. Mark J. Llewellyn

Practice Problems
3. Rewrite your solution to Practice Problem 2, so that the function

now uses the pass-by-reference technique and accepts all three

parameters in one call.

